非常見問題解答第220期:開關(guān)模式電源問題分析及其糾正措施:電感器不符合規(guī)格要求

        本文作者:Abe Ibraheim       點擊: 2024-08-08 14:30
        前言:
        作者:Abe Ibraheim,核心應(yīng)用部實習(xí)生,Kenneth Armijo,核心應(yīng)用部工程師, Piyu Dhaker,資深工程師
        問題
        為什么我的電源會出現(xiàn)振鈴和過熱?


        回答
        電感器尺寸不當(dāng)和超出電感飽和電流額定值可能會導(dǎo)致DC-DC轉(zhuǎn)換器出現(xiàn)多種問題,其中兩個問題是振鈴和過熱。

        摘要
        本文是系列文章中的第一篇,該系列文章將討論常見的開關(guān)模式電源(SMPS)的設(shè)計問題及其糾正方案。本文旨在解決DC-DC開關(guān)穩(wěn)壓器的功率級設(shè)計中面臨的復(fù)雜難題,重點分析電感問題。設(shè)計人員為了獲得各種優(yōu)勢,例如減少輸出紋波和盡量縮減解決方案尺寸,往往會選擇超出推薦范圍的電感值。然而,選擇電感值過大或過小的元件都會導(dǎo)致意想不到的后果,可能會造成芯片嚴(yán)重?fù)p壞并降低效率。本文還將分析探討:如果不采取適當(dāng)?shù)拇胧_保負(fù)載電流不會超過電感的最大飽和額定值,會出現(xiàn)什么情況。

        什么是開關(guān)模式電源
        SMPS是一種高效穩(wěn)壓器,可降低輸入電壓(降壓轉(zhuǎn)換器)、升高輸入電壓(升壓轉(zhuǎn)換器),或同時執(zhí)行這兩種操作(降壓-升壓轉(zhuǎn)換器)。圖1所示為基本開關(guān)轉(zhuǎn)換器拓?fù)洹?/span>
         
        圖1.常見的SMPS拓?fù)浼捌漭敵龉健?/span>

        每個SMPS都以同樣的方式工作:將能量存儲在電感器中,并利用脈寬調(diào)制(PWM)技術(shù)來獲得所需的輸出。這些轉(zhuǎn)換器都應(yīng)遵循伏秒平衡定律,即在穩(wěn)態(tài)下工作時,電感在一個周期內(nèi)的平均電流必須為零。因此,電感器必須在另一個周期開始之前,將充電階段存儲的所有電流放電。

        降壓轉(zhuǎn)換器操作
        本文僅使用降壓轉(zhuǎn)換器來演示常見的設(shè)計錯誤。降壓轉(zhuǎn)換器的功率級由以下四個元件組成:電感器、輸出電容器、頂部FET(由開關(guān)表示)和底部FET(由二極管表示),見圖2。
         
        圖2.簡化的降壓轉(zhuǎn)換器功率級。

        電感器兩端的電壓通過以下公式計算:VL = L diL/dt。該電壓是開關(guān)節(jié)點與輸出電壓之間的差值。當(dāng)頂部FET導(dǎo)通時,VL是輸入電壓和輸出電壓之間的差值。當(dāng)頂部FET關(guān)斷時,由于開關(guān)節(jié)點接地,因此差值為0 V減去輸出。diL/dt(或?iL)是電感電流隨時間的變化量,通常稱為電感電流紋波。當(dāng)頂部FET閉合(底部FET斷開)時,隨著流經(jīng)電感器的電流增加,電感器以磁通量的形式存儲能量。當(dāng)頂部FET斷開,磁場消失時,底部FET會形成接地路徑,從而使電流在減小時仍能夠流向負(fù)載。圖3所示的電感電流波形中可以看出這一點。輸出電容用于獲得平穩(wěn)的輸出紋波,并協(xié)助保持所需的輸出電壓。降壓轉(zhuǎn)換器的輸出電壓由VOUT = DVIN得出,其中D是占空比,定義為頂部FET導(dǎo)通并對電感器充電的時間占總周期時間的百分比。
         
        圖3.電感電流波形。當(dāng)頂部FET導(dǎo)通時,流經(jīng)電感器的電流充電;當(dāng)頂部FET關(guān)斷時,流經(jīng)電感器的電流放電。

        推薦的電感器尺寸
        在設(shè)計SMPS時,必須選擇正確的電感值,以確保電感電流紋波(ΔiL)在可接受范圍內(nèi)。建議降壓轉(zhuǎn)換器的電感紋波應(yīng)介于所施加負(fù)載電流的30%至40%之間。通常認(rèn)為此范圍比較理想,既足以捕獲準(zhǔn)確的信號并將其傳送到電流模式控制反饋系統(tǒng),又不會過大,導(dǎo)致電源進入斷續(xù)導(dǎo)通模式(DCM)。DCM是一種狀態(tài),在該狀態(tài)下,因電流紋波太大而迫使電流低于0 A,以便將負(fù)載電流維持在所需值。然而,一旦達到0 A,F(xiàn)ET內(nèi)部的二極管就不再導(dǎo)通,從而防止電流降至0 A以下。一般基于以下公式來正確選擇電感:

         

        此公式表明,開關(guān)頻率與電感成反比,這意味著頻率越高,充電時間就越短,從而可以使用更小的電感實現(xiàn)正常操作(節(jié)省占用空間和成本)。

        電感器飽和
        在SMPS設(shè)計中,常見的一種災(zāi)難性錯誤就是在選擇功率電感時忽略了電流飽和額定值。當(dāng)流經(jīng)電感的電流超過飽和電流額定值時,電感器鐵芯飽和,這意味著產(chǎn)生的磁場將不再與消耗的電流成比例地增加。這會破壞伏秒平衡定律,導(dǎo)致電感電流紋波和輸出電壓紋波失去線性特性。當(dāng)鐵芯飽和時,電感值會迅速降低,其行為更像電阻而不是電感。由于電感器的有效串聯(lián)電阻(ESR)增加,而實際電感減小,因此,為了滿足伏特秒平衡,電流變化量將被迫增加。在飽和電流波形中觀測到尖峰是電流斜率呈指數(shù)增加造成的,如圖4所示。該電流尖峰會影響輸出電壓,從而導(dǎo)致更多噪聲和電壓尖峰,如圖5所示。如果電壓尖峰過大,超過下游元件的最大電壓額定值,噪聲和電壓尖峰可能會損壞下游元件,并降低EMI性能。
         
        圖4.飽和電感電流波形。波形在電流超過飽和額定值之前表現(xiàn)正常。
         
        圖5.飽和電感輸出紋波。尖峰會延續(xù)到輸出,其中包含噪聲和電壓尖峰。

        此外,在電流波動較大的情況下,電感器會經(jīng)歷快速磁滯損耗,從而導(dǎo)致電感器散熱過多(如圖6所示)并產(chǎn)生可聞噪聲。過多的熱量可能會損壞附近的其他元件(尤其是穩(wěn)壓器芯片本身)。
         
        圖6.電感器飽和散熱溫度為226°F (107.78°C)。

        為避免出現(xiàn)此問題,設(shè)計人員應(yīng)選擇額定電流至少比預(yù)期最大電流高兩倍的電感器。在計算最大電流時,一定要考慮電感電流紋波以及輸出端消耗的負(fù)載電流。此外,設(shè)計人員還可以參考所選電感器的數(shù)據(jù)手冊,了解在多大電流下電感值會降低10%到30%,這就是飽和的定義。選擇具有適當(dāng)飽和電流額定值的電感器將會使系統(tǒng)正常運行,如圖7中流經(jīng)電感器的線性電流所示。輸出電壓尖峰將會消失,如圖8所示。最后,系統(tǒng)將在更低的溫度下運行(如圖9所示),從而減少對設(shè)備的影響并延長設(shè)備的使用壽命。
         
        圖7.標(biāo)稱電感電流波形。
         
         
        圖8.標(biāo)稱電感輸出紋波。
         
         
        圖9.標(biāo)稱電感散熱溫度為99.7°F ( 37.61°C)。

        超小電感器面臨的難題
        設(shè)計人員通常為了節(jié)省占用空間更傾向選擇電感值較小的電感,這樣的電感器線圈數(shù)量較少,因此外形尺寸較小。然而,如果電感器太小,紋波電流就會很大,并會迫使轉(zhuǎn)換器進入DCM模式,這對于SMPS來說是不可取的,因為器件的效率會降低,電磁干擾(EMI)性能也會變差。當(dāng)開關(guān)節(jié)點出現(xiàn)振鈴時,可能會觀測到這種EMI性能下降現(xiàn)象,這是由寄生效應(yīng)和LC諧振電路(產(chǎn)生諧振電路)引起的,如圖10所示。這種振鈴會影響輸出電壓,從而導(dǎo)致更大的紋波和更多的電壓尖峰,如圖11所示。此外,電源不再處于連續(xù)導(dǎo)通模式(CCM),并且推導(dǎo)出的SMPS輸出公式不再適用。
         
        圖10.超小電感輸出波形。如果無法獲得電感電流,也會在開關(guān)節(jié)點處觀測到振鈴現(xiàn)象。
         
         
        圖11.超小電感電流波形。電流和RSENSE中出現(xiàn)振鈴表明電源處于DCM模式。

        為了解決此問題,設(shè)計人員應(yīng)選擇能夠提供約30%至40%電流紋波的電感。這樣就會降低電感電流紋波的幅度,使器件從DCM返回CCM模式,如圖12所示。這也會改善輸出電壓紋波,消除電壓尖峰,如圖8所示。如果設(shè)計人員在計算所需電感值和選擇適用元件時遇到困難,可以使用LTPowerCAD來協(xié)助設(shè)計和選擇功率級元件。
         
        圖12.標(biāo)稱電感電流波形。

        超大電感器面臨的難題
        連接到SMPS的下游電子元件通常具有指定的電源電壓和相關(guān)容差。如果電壓軌上的紋波過大,將嚴(yán)重影響系統(tǒng)的運行。例如,如果微控制器的電源規(guī)格為3.3 V ±50 mV,則紋波大于±50 mV可能會導(dǎo)致微控制器關(guān)閉。設(shè)計人員一般通過增加電感器的尺寸來減少這種紋波。然而,如果電感器尺寸過大,電流紋波以及輸出電壓紋波會顯著減少。盡管這聽起來可取,但它會導(dǎo)致反饋系統(tǒng)出現(xiàn)問題,而且還會導(dǎo)致瞬態(tài)響應(yīng)變慢。小紋波將使串聯(lián)檢測電阻很難檢測到變化,從而使傳遞到反饋環(huán)路的常見三角波形失真。當(dāng)電感電流紋波較小時,信噪比(SNR)會降低。這會導(dǎo)致反饋環(huán)路將噪聲記錄為電感器信號,從而導(dǎo)致輸出信號不穩(wěn)定(表現(xiàn)為抖動),如圖13所示。
         
        圖13.輸出不穩(wěn)定造成抖動。超大電感輸出波形表現(xiàn)出持續(xù)特性。突出顯示的波形采用標(biāo)稱電感捕獲。

        此外,電感值越大,飽和電流額定值通常越小。這可能會導(dǎo)致電感飽和,對于器件而言非常危險,如“電感器飽和”部分所述。超大電感飽和帶來的影響如圖14所示。
         
        圖14.電感值為標(biāo)稱值22倍的電感器的飽和電感輸出波形。額定電流不會隨電感成比例增加。

        為了緩解此問題,設(shè)計人員切記,輸出電壓紋波可通過改變輸出電容選擇來控制。通過增加輸出電容器的值或降低其ESR,可以減少輸出電壓紋波,而無需增加電感器的值。這樣電感電流紋波值保持在30%到40%之間,從而使檢測架構(gòu)能夠正確獲取信號。這一點可以從圖15中看出。
         
        圖15.標(biāo)稱檢測電阻波形。

        結(jié)論
        本文可作為分析降壓轉(zhuǎn)換器中電感器設(shè)計問題的指南。此外,本文旨在為設(shè)計人員提供實用解決方案,避免出現(xiàn)文中所述的任何干擾行為。通過適當(dāng)調(diào)整電感大小,將電感紋波保持在輸出的30%至40%范圍內(nèi),對于確保器件保持在CCM狀態(tài),并且不會引起干擾抖動或飽和至關(guān)重要,這種抖動或飽和可能會對負(fù)載或穩(wěn)壓器芯片本身造成致命影響。
         
        關(guān)于ADI
        Analog Devices, Inc. (NASDAQ: ADI)是全球領(lǐng)先的半導(dǎo)體公司,致力于在現(xiàn)實世界與數(shù)字世界之間架起橋梁,以實現(xiàn)智能邊緣領(lǐng)域的突破性創(chuàng)新。ADI提供結(jié)合模擬、數(shù)字和軟件技術(shù)的解決方案,推動數(shù)字化工廠、汽車和數(shù)字醫(yī)療等領(lǐng)域的持續(xù)發(fā)展,應(yīng)對氣候變化挑戰(zhàn),并建立人與世界萬物的可靠互聯(lián)。ADI公司2023財年收入超過120億美元,全球員工約2.6萬人。攜手全球12.5萬家客戶,ADI助力創(chuàng)新者不斷超越一切可能。更多信息,請訪問

        關(guān)于作者
        Abe Ibraheim是核心應(yīng)用部的實習(xí)生,于2023年夏加入ADI公司。Abe是伍斯特理工學(xué)院一名大三學(xué)生,正在攻讀電氣和計算機工程學(xué)士和碩士學(xué)位。他的專業(yè)方向是微電子和電力系統(tǒng)。

        Kenneth Armijo于2022年加入ADI公司,擔(dān)任核心應(yīng)用部助理工程師。他擁有伍斯特理工學(xué)院電氣工程和機器人工程兩個學(xué)士學(xué)位,還擁有電氣工程碩士學(xué)位。他專注于電源管理電路(主要是開關(guān)穩(wěn)壓器)的設(shè)計和實現(xiàn)。

        Piyu Dhaker是ADI公司北美核心應(yīng)用部的一名應(yīng)用工程師。2007年畢業(yè)于圣何塞大學(xué),獲電氣工程碩士學(xué)位。2017年6月加入北美核心應(yīng)用部。她還曾在ADI的汽車動力總成部和電源管理部工作。
         

         

        主站蜘蛛池模板: 国内精品久久久久久久亚洲| 亚洲AV成人潮喷综合网| 久久精品亚洲中文字幕无码网站 | 亚洲综合图片小说区热久久| 国产在线播放线91免费 | 亚洲特级aaaaaa毛片| 四虎1515hh永久久免费| 亚洲伊人久久大香线蕉影院| 日韩吃奶摸下AA片免费观看| 中文字幕无码精品亚洲资源网久久 | 久久精品免费一区二区三区| 亚洲精品无码Av人在线观看国产| 水蜜桃视频在线观看免费播放高清 | xxxxx做受大片在线观看免费| 亚洲伊人久久综合影院| 99久久国产精品免费一区二区 | 亚洲成a人片在线观看无码| 久久国产色AV免费观看| 亚洲丝袜中文字幕| 国产小视频在线免费| 精选影视免费在线 | 亚洲特级aaaaaa毛片| 国产成人3p视频免费观看| 中文字幕不卡高清免费| 亚洲欧洲视频在线观看| 免费看国产曰批40分钟| 国产午夜成人免费看片无遮挡| 亚洲中文字幕久在线| 亚洲国产91精品无码专区| 免费人成在线观看网站| 一本色道久久88—综合亚洲精品| 亚洲第一永久AV网站久久精品男人的天堂AV | 亚洲av福利无码无一区二区 | 亚洲精品成人网站在线观看| 久久久久久精品免费看SSS | 亚洲欧洲国产综合| 全黄a免费一级毛片人人爱| 久久免费看少妇高潮V片特黄| 亚洲国产精品无码中文lv| 亚洲精品乱码久久久久久久久久久久| 人成午夜免费视频在线观看|