如何為ATE應(yīng)用創(chuàng)建具有拉電流和灌電流功能的雙輸出電壓軌

        本文作者:Jhun Rennel Sanchez       點(diǎn)擊: 2023-04-27 11:40
        前言:
        作者:Jhun Rennel Sanchez,產(chǎn)品應(yīng)用工程師和Anthony Serqui?a,高級(jí)應(yīng)用開發(fā)工程師
        摘要
        本文詳細(xì)介紹一種創(chuàng)建雙輸出電壓軌的方法,該方法能為設(shè)備電源(DPS)提供正負(fù)電壓軌,并且只需要一個(gè)雙向電源。傳統(tǒng)的設(shè)備電源供電方法使用兩個(gè)雙向(拉電流和灌電流能力)電源,一個(gè)為正電壓軌供電,一個(gè)為負(fù)電壓軌供電。這種配置不但笨重,且成本高昂。

        簡(jiǎn)介
        DPS一般與自動(dòng)測(cè)試設(shè)備(ATE)和其他測(cè)量設(shè)備搭配使用。ATE是一種電腦控制機(jī)械設(shè)備,自動(dòng)驅(qū)動(dòng)傳統(tǒng)的手動(dòng)電子測(cè)試設(shè)備來評(píng)估功能、質(zhì)量、性能和應(yīng)力測(cè)試。這些ATE需要配套的DPS提供四象限電源運(yùn)行能力。DPS是一種四象限電源,可以提供正電壓或負(fù)電壓,同時(shí)具備拉電流和灌電流能力。要使用DPS為更大電流的應(yīng)用供電,需要將多個(gè)DPS設(shè)備組合在一起,以提高解決方案的電流容量。DPS可以提供拉電流和獲取灌電流,所以DPS的電源必須具備同樣的功能。采用雙輸出電壓軌設(shè)計(jì)旨在將所需的雙向電源的數(shù)量減少至一個(gè),同時(shí)仍然為DPS提供正負(fù)雙向電源。構(gòu)建雙向正電源非常簡(jiǎn)單,可以使用市面上提供拉電流和灌電流的多種IC實(shí)現(xiàn)。問題在于根據(jù)受測(cè)設(shè)備(DUT)的要求,負(fù)電源也需要具有拉電流和灌電流能力。一種解決方案是使用雙向降壓IC,該IC可以配置用作反相降壓-升壓轉(zhuǎn)換器。例如LTC3871,這是一個(gè)雙向降壓或升壓控制器,可用于正電壓軌和負(fù)電壓軌。

        使用降壓IC設(shè)計(jì)反相降壓-升壓轉(zhuǎn)換器
        圖1顯示了降壓轉(zhuǎn)換器的簡(jiǎn)化原理示意圖。該轉(zhuǎn)換器獲取正電壓輸入,然后輸出幅度更低的正電壓。圖2顯示了一個(gè)反相降壓-升壓轉(zhuǎn)換器,它獲取正電壓輸出,然后輸出幅度更小或更大的負(fù)電壓。如圖3所示,可以按照以下步驟,將降壓拓?fù)滢D(zhuǎn)換為反相降壓-升壓拓?fù)洌?/span>

        ? 將降壓轉(zhuǎn)換器的正電壓輸出轉(zhuǎn)換為系統(tǒng)地
        ? 將降壓轉(zhuǎn)換器的系統(tǒng)地轉(zhuǎn)換為負(fù)電壓輸出節(jié)點(diǎn)
        ? 在降壓轉(zhuǎn)換器的VIN和正電壓輸出之間施加輸入電壓

        圖4顯示了將降壓IC轉(zhuǎn)換為反相降壓-升壓配置的簡(jiǎn)化原理圖。 
        圖1.降壓轉(zhuǎn)換器。
         
        圖2.反相降壓-升壓轉(zhuǎn)換器。
         
        圖3.將降壓轉(zhuǎn)換器轉(zhuǎn)換為反相降壓-升壓配置。
         
        圖4.反相降壓-升壓拓?fù)渲惺褂玫慕祲篒C。

        轉(zhuǎn)換降壓IC的工作原理
        拉電流
        圖5顯示反相降壓-升壓轉(zhuǎn)換器的波形,以及提供拉電流時(shí)的電流路徑。圖5a顯示控制MOSFET導(dǎo)通時(shí)轉(zhuǎn)換器中的電流流動(dòng)。圖5c顯示控制MOSFET中的電流流動(dòng),其平均值為輸入電流。在這段時(shí)間內(nèi),電感開始儲(chǔ)存電能,使電流升高,輸出電容為負(fù)載供電。在此期間,電感電壓等于輸入電壓。

        當(dāng)control MOSFET關(guān)斷后,sync MOSFET導(dǎo)通,圖5b顯示sync MOSFET中的電流流動(dòng)。輸出電流是sync MOSFET的平均電流,電感電壓等于輸出電壓。當(dāng)電感開始為負(fù)載和電容器供電時(shí),其電流開始下降。每個(gè)開關(guān)周期都如此重復(fù)。

        轉(zhuǎn)換器反饋控制脈寬調(diào)制(PWM),將輸出電壓調(diào)節(jié)至分壓電阻設(shè)置的所需電平。公式1顯示了輸出電壓與輸入電壓之間的關(guān)系。

         
        其中
        ? VOUT =輸出電壓
        ? VIN =輸入電壓
        ? D =占空比
        ? η = 系統(tǒng)效率

        占空比大于50%時(shí),輸出電壓大于輸入電壓,占空比小于50%時(shí),輸出電壓小于輸入電壓。

        灌電流
        轉(zhuǎn)換器開始獲取灌電流時(shí),電流從輸出流向輸入,如圖6a和6b所示。圖6c和6d分別顯示了電流流經(jīng)控制MOSFET和sync MOSFET的過程。由于轉(zhuǎn)換器正在獲取灌電流,所以負(fù)電流會(huì)流經(jīng)MOSFET。測(cè)試結(jié)果部分顯示了獲取灌電流期間的負(fù)電感電流。

        測(cè)試結(jié)果
        圖7顯示用于測(cè)試設(shè)計(jì)的拉灌電流和灌拉電流能力的實(shí)際設(shè)置。圖8顯示了該設(shè)置的框圖。雙向直流電源用作VPOS的電源,處于CV模式。另一個(gè)直流電源連接至VNEG的輸出。此直流電源控制流入系統(tǒng)的電流量。阻塞二極管與該直流電源串聯(lián),確保轉(zhuǎn)換器提供拉電流時(shí)不會(huì)有電流流入轉(zhuǎn)換器。電子負(fù)載用作初始負(fù)載,以表明系統(tǒng)能夠從提供拉電流轉(zhuǎn)換為獲取灌電流,反之亦然。 
         
        圖5.(a)導(dǎo)通期間的電流流動(dòng),(b)關(guān)斷期間的電流流動(dòng),(c)流經(jīng)頂部/控制MOSFET的電流,(d)流經(jīng)底部/sync MOSFET的電流,(e)電感電壓。
         
        圖6.(a)導(dǎo)通期間的電流流動(dòng),(b)關(guān)斷期間的電流流動(dòng),(c)流經(jīng)頂部/控制MOSFET的電流,(d)流經(jīng)底部/sync MOSFET的電流。
         
         
        圖7.用于進(jìn)行拉灌電流測(cè)試的電路板設(shè)置。
         
        圖8.該測(cè)試板電路設(shè)置的框圖。

        捕捉到的波形如圖9所示。直流電源開啟后,VNEG電壓軌開始獲取灌電流。從電感電流波形可以看出,它從正電流轉(zhuǎn)為負(fù)電流。在VNEG獲取灌電流時(shí),系統(tǒng)在此條件下保持開環(huán),拉灌電流由外部直流電源的CC模式控制。圖10所示的VPOS也是如此。連接至其輸出的直流電電源開啟后,VPOS電壓軌開始獲取灌電流。
         
        圖9.VNEG拉電流向灌電流轉(zhuǎn)變(+1 A至–20 A)。
         
        圖10.VPOS拉電流向灌電流轉(zhuǎn)變(+1 A至–20 A)。

        捕捉到的波形如圖11所示,展示了系統(tǒng)從拉電流向灌電流轉(zhuǎn)變的行為。從電感電流可以看出,它從負(fù)電流轉(zhuǎn)為正電流。這表明停止向VNEG施加DC電壓之后,電流重新轉(zhuǎn)變?yōu)槔娏鳌D12所示的VPOS電源軌也是如此。
         
        圖11.VNEG灌電流向拉電流轉(zhuǎn)變(-20 A至+1 A)。
         
        圖12.VPOS灌電流向拉電流轉(zhuǎn)變(-20 A至+1 A)。

        結(jié)論
        雙輸出電壓軌能夠進(jìn)行VPOS和VNEG雙向供電,所以減少了所需的設(shè)備數(shù)量。因?yàn)楣嗳胍粋€(gè)電源軌的電流可用于為另一個(gè)電源軌供電,使得主電源拉取的電流減少,所以其效率更高。該設(shè)計(jì)還有另一個(gè)優(yōu)勢(shì),即在設(shè)計(jì)雙向反相降壓-升壓轉(zhuǎn)換器時(shí),可供選擇的IC會(huì)更多。

        參考資料
        Matthew Kessler。“AN-1083(版本A):利用開關(guān)穩(wěn)壓器ADP2300和ADP2301設(shè)計(jì)反相降壓-升壓轉(zhuǎn)換器。”(ADI公司,2010年)

        Ricky Yang。“AN-1168(版本0):采用ADP2384/ADP2386同步降壓DC-DC穩(wěn)壓器設(shè)計(jì)反相電源。”(ADI公司,2012年)
         
        關(guān)于ADI公司
        Analog Devices, Inc. (NASDAQ: ADI)是全球領(lǐng)先的半導(dǎo)體公司,致力于在現(xiàn)實(shí)世界與數(shù)字世界之間架起橋梁,以實(shí)現(xiàn)智能邊緣領(lǐng)域的突破性創(chuàng)新。ADI提供結(jié)合模擬、數(shù)字和軟件技術(shù)的解決方案,推動(dòng)數(shù)字化工廠、汽車和數(shù)字醫(yī)療等領(lǐng)域的持續(xù)發(fā)展,應(yīng)對(duì)氣候變化挑戰(zhàn),并建立人與世界萬物的可靠互聯(lián)。ADI公司2022財(cái)年收入超過120億美元,全球員工2.4萬余人。攜手全球12.5萬家客戶,ADI助力創(chuàng)新者不斷超越一切可能。更多信息,請(qǐng)?jiān)L問www.analog.com/cn

        關(guān)于作者
        Jhun Rennel Sanchez于2020年11月加入ADI公司。2018年,他畢業(yè)于布拉卡國立大學(xué),獲電子工程學(xué)士學(xué)位。此外,2020年獲得馬普阿大學(xué)電力電子學(xué)位。

        Anthony Serquiña是ADI菲律賓公司的高級(jí)應(yīng)用開發(fā)工程師。他畢業(yè)于菲律賓碧瑤市圣路易斯大學(xué),獲電子和通信工程學(xué)士學(xué)位。他在電力電子領(lǐng)域擁有超過14年的經(jīng)驗(yàn),包括電源管理IC開發(fā)以及AC-DC和DC-DC前端電源轉(zhuǎn)換。他于2018年11月加入ADI公司,目前負(fù)責(zé)支持工業(yè)應(yīng)用的電源管理需求。他曾在ADI信號(hào)鏈電源(SCP)硬件和軟件平臺(tái)的開發(fā)中發(fā)揮了重要作用。
         
        主站蜘蛛池模板: 亚洲免费视频在线观看| 亚洲中文字幕AV在天堂| 91青青青国产在观免费影视| 久久久亚洲裙底偷窥综合| 成人女人A级毛片免费软件| 黄色毛片免费观看| 亚洲成人在线电影| 日本一区免费电影| 一区二区三区四区免费视频 | 岛国精品一区免费视频在线观看| 亚洲AV日韩AV永久无码绿巨人 | 看Aⅴ免费毛片手机播放| 亚洲理论电影在线观看| 久久综合AV免费观看| 久久精品成人免费观看97| 亚洲av无码片在线观看| 爱情岛论坛网亚洲品质自拍| 免费人成在线观看69式小视频| 特级一级毛片免费看| 亚洲成人免费电影| 不卡精品国产_亚洲人成在线| 日韩亚洲国产高清免费视频| 成年女人18级毛片毛片免费观看| 猫咪www免费人成网站| 亚洲精品福利在线观看| 国产精品亚洲w码日韩中文| 毛片免费视频播放| 免费国产叼嘿视频大全网站| 久久久久久亚洲精品无码| 亚洲福利一区二区三区| 亚洲色自偷自拍另类小说| 日本免费人成黄页在线观看视频| 91福利视频免费观看| 在线视频网址免费播放| 在线观看亚洲免费视频| 亚洲娇小性xxxx色| 久久久无码精品亚洲日韩蜜臀浪潮 | 84pao国产成视频免费播放| 一本到卡二卡三卡免费高| 亚洲欧美熟妇综合久久久久| 亚洲最新中文字幕|